Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Composites Science a...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Continuous-glass-fibre-reinforced polypropylene composites. 1. Influence of maleic-anhydride-modified polypropylene on mechanical properties

Authors: Rijsdijk, H.A.; Contant, M.; Peijs, A.A.J.M.;

Continuous-glass-fibre-reinforced polypropylene composites. 1. Influence of maleic-anhydride-modified polypropylene on mechanical properties

Abstract

This study investigates the influence of maleic-anhydride-modified polypropylene (m-PP) on monotonic mechanical properties of continuous-glass-fibre-reinforced polypropylene (PP) composites. Maleic-anhydride-modified polypropylene was added to the PP homopolymer to improve the adhesion between the matrix and the glass fibre. Three-point bending tests were performed on 0Ý and 90Ý unidirectional glass-fibre/PP laminates with various weight fractions of m-PP in the PP matrix. These tests showed an increase in both longitudinal and transverse flexural strength up to 10 wt% m-PP, whereas at higher weight fractions of m-PP a decrease in flexural strength was observed. No significant influence of m-PP on composite stiffness was observed. Additional mechanical tests on unidirectional glass/PP composites with 0 wt% and 10 wt% m-PP showed only a small increase in fibre-dominated properties such as longitudinal tensile strength and strain, whereas composite properties that are governed by the interphase, such as transverse, shear and compressive strength, showed significant increases as a result of matrix modification and an enhanced interaction between the glass fibres and the PP matrix

Country
Netherlands
Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
bronze