
This paper presents new radix-2 and radix-22 constant geometry fast Fourier transform (FFT) algorithms for graphics processing units (GPUs). The algorithms combine the use of constant geometry with special scheduling of operations and distribution among the cores. Performance tests on current GPUs show a significant improvements compared to the most recent version of NVIDIA’s well-known CUFFT, achieving speedups of up to 5.6x.
Fast Fourier transform (FFT), Other Electrical Engineering, Electronic Engineering, Information Engineering, graphics processing unit (GPU), radix, CUDA, Annan elektroteknik och elektronik, real-time., constant geometry
Fast Fourier transform (FFT), Other Electrical Engineering, Electronic Engineering, Information Engineering, graphics processing unit (GPU), radix, CUDA, Annan elektroteknik och elektronik, real-time., constant geometry
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
