
We consider the classic problem of computing the Longest Common Subsequence (LCS) of two strings of length n. While a simple quadratic algorithm has been known for the problem for more than 40 years, no faster algorithm has been found despite an extensive effort. The lack of progress on the problem has recently been explained by Abboud, Backurs, and Vassilevska Williams [FOCS'15] and Bringmann and Künnemann [FOCS'15] who proved that there is no subquadratic algorithm unless the Strong Exponential Time Hypothesis fails. This major roadblock for getting faster exact algorithms has led the community to look for subquadratic approximation algorithms for the problem. Yet, unlike the edit distance problem for which a constant-factor approximation in almost-linear time is known, very little progress has been made on LCS, making it a notoriously difficult problem also in the realm of approximation. For the general setting (where we make no assumption on the length of the optimum solution or the alphabet size), only a naive O(n^{ε/2})-approximation algorithm with running time Õ(n^{2-ε}) has been known, for any constant 0 < ε ≤ 1. Recently, a breakthrough result by Hajiaghayi, Seddighin, Seddighin, and Sun [SODA'19] provided a linear-time algorithm that yields a O(n^{0.497956})-approximation in expectation; improving upon the naive O(√n)-approximation for the first time. In this paper, we provide an algorithm that in time O(n^{2-ε}) computes an Õ(n^{2ε/5})-approximation with high probability, for any 0 < ε ≤ 1. Our result (1) gives an Õ(n^{0.4})-approximation in linear time, improving upon the bound of Hajiaghayi, Seddighin, Seddighin, and Sun, (2) provides an algorithm whose approximation scales with any subquadratic running time O(n^{2-ε}), improving upon the naive bound of O(n^{ε/2}) for any ε, and (3) instead of only in expectation, succeeds with high probability.
Longest common subsequence, longest common subsequence, string algorithm, Approximation algorithm, approximation algorithm, 004, String algorithm, ddc: ddc:004
Longest common subsequence, longest common subsequence, string algorithm, Approximation algorithm, approximation algorithm, 004, String algorithm, ddc: ddc:004
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
