<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 10486/661282
La citocromo c oxidasa o complejo IV es el ultimo elemento de la cadena de transporte de electrones mitocondrial. Cataliza la oxidación del citocromo c transfiriendo sus electrones al oxígeno. El déficit de complejo IV debido a mutaciones en factores de ensamblaje es uno de los defectos más comunes de la cadena respiratoria. Estas patologías se caracterizan por su aparición a una edad temprana y cursar con un amplio espectro de manifestaciones clínicas como encefalopatía, cardiomiopatía, hepatopatía o leucodistrofia. SCO1 y SCO2 son dos metalochaperonas responsables de la formación del centro de cobre CuA en el ensamblaje del complejo IV. Mutaciones en SCO1 causan hepatoencefalomiopatía aunque se ha descrito un caso que también presenta cardiomiopatía hipertrófica. Las mutaciones en SCO2 causan cardiomiopatía hipertrófica y encefalopatía infantil. A excepción de un caso, todos los pacientes portan la mutación E140K. En esta tesis hemos utilizado Drosophila melanogaster como sistema modelo para el estudio de las bases genéticas y moleculares de la cardiopatía causada por mutaciones en las proteínas SCO. Los mecanismos genéticos que controlan la especificación de los cardiomiocitos y numerosos aspectos de la fisiología del corazón están conservados en Drosophila lo que hace de este organismo un excelente modelo para el estudio de la función cardiaca y las cardiomiopatías humanas. Además, recientemente se han desarrollado técnicas que permiten caracterizar la fisiología del corazón de Drosophila, facilitando el estudio de cómo defectos en la cadena de transporte de electrones, afectan a la función cardiaca. Drosophila presenta un solo ortólogo para los genes de mamífero Sco1 y Sco2, ScoX. Los resultados obtenidos demuestran que la interferencia de ScoX en el corazón causa una cardiomiopatía dilatada, viéndose gravemente afectada tanto la función como la estructura del corazón. Los cardiomiocitos sufren un cambio metabólico favoreciendo la glicólisis frente a la fosforilación oxidativa, causando, probablemente, acidosis láctica y emulando los síntomas clínicos observados en pacientes con mutaciones en Sco1 y Sco2. El fenotipo observado es debido a una activación, dependiente de dp53, de la muerte celular. Estos resultados sugieren que dp53 contribuye directamente en el desarrollo de la cardiomiopatía.
Cytochrome c oxidase or complex IV is the terminal component of the mitochondrial electron transport chain. It catalyses the transfer of electrons from reduced cytochrome c to molecular oxygen. Complex IV deficiency due to mutations in assembly factors is one of the most frequent defects of respiratory chain in humans. These pathologies are characterized by a very early age of onset and the display of different clinical presentations, as encephalopathy, cardiomyopathy, hepatic failure and leukodystrophy. SCO1 and SCO2 are two metallochaperones playing a key role in the formation of cooper centre CuA during complex IV assembly. Mutations in SCO1 cause hepatoencephalomyopathy although one case has been reported which also presents hypertrophic cardiomyopathy. Mutations in SCO2 cause hypertrophic cardiomyopathy and infantile encephalomyophathy and with but one exception, all patients harbour the E140K mutation. In this thesis, we have used Drosophila melanogaster as model system to investigate the genetic and molecular mechanisms that underlie the cardiomyopathy associated with SCO deficiency. The genetic network controlling cardiac specification and differentiation as well as many aspects of heart function are conserved from flies to mammals. Thus, Drosophila has become a powerful model system for the study and understanding of cardiac function and human cardiomyopathies. Furthermore, the recently established heart function assays in Drosophila make it possible to characterize how mitochondrial electron transport chain defects affect heart function. In Drosophila there is a single ortholog of mammalian Sco1 and 2, ScoX. Our findings demonstrate that cardiac-specific knockdown of ScoX causes dileted cardiomyopathy severely compromising heart function and structure. Cardiomyocytes undergo a metabolic switch from oxidative phosphorylation to glycolysis probably accompanied by lactic acidosis and therefore mimicking the clinical features found in patients with mutations in Sco1 and Sco2. The observed phenotype is result of dp53- dependent cell death activation. These results strongly suggest that dp53 is directly involved in cardiomyopathy development.
Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Medicina, Departamento de Bioquímica. Fecha de lectura: 11/07/2014
Mitocondrias - Tesis doctorales, Cardiopatías - Tesis doctorales, Medicina
Mitocondrias - Tesis doctorales, Cardiopatías - Tesis doctorales, Medicina
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |