
handle: 11441/61088
Let f(n) be a function and L be a graph. Denote by RT(n, L, f(n)) the maximum number of edges of an L-free graph on n vertices with independence number less than f(n). Erdos and Sós asked if RT (n, K5, c√ n) = o (n2) for some constant c. We answer this question by proving the stronger RT(n, K5, o (√n log n)) = o(n2). It is known that RT (n, K5, c√n log n )= n2/4 + o (n2) for c > 1, so one can say that K5 has a Ramsey-Turán-phase transition at c√n log n. We extend this result to several other Kp's and functions f(n), determining many more phase transitions. We shall formulate several open problems, in particular, whether variants of the Bollobás-Erdos graph, which is a geometric construction, exist to give good lower bounds on RT (n, Kp, f(n)) for various pairs of p and f(n). These problems are studied in depth by Balogh-HuSimonovits, where among others, the Szemerédi's Regularity Lemma and the Hypergraph Dependent Random Choice Lemma are used.
National Science Foundation
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
