
In this paper, we first briefly introduce the multidimensional Principal Component Analysis (PCA) techniques, and then amend our previous N-dimensional PCA (ND-PCA) scheme by introducing multidirectional decomposition into ND-PCA implementation. For the case of high dimensionality, PCA technique is usually extended to an arbitrary n-dimensional space by the Higher-Order Singular Value Decomposition (HO-SVD) technique. Due to the size of tensor, HO-SVD implementation usually leads to a huge matrix along some direction of tensor, which is always beyond the capacity of an ordinary PC. The novelty of this paper is to amend our previous ND-PCA scheme to deal with this challenge and further prove that the revised ND-PCA scheme can provide a near optimal linear solution under the given error bound. To evaluate the numerical property of the revised ND-PCA scheme, experiments are performed on a set of 3D volume datasets.
csi
csi
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
