Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Proteotype profiling unmasks a viral signaling network essential for poxvirus assembly and transcriptional competence

Proteotype profiling unmasks a viral signaling network essential for poxvirus assembly and transcriptional competence

Abstract

Abstract To orchestrate context-dependent signaling programs poxviruses encode two dual-specificity enzymes, the F10 kinase and the H1 phosphatase. These signaling mediators are essential for poxvirus production, yet their substrate profiles and systems level functions remain enigmatic. Using a phosphoproteomic screen of cells infected with wildtype, F10, and H1 mutant viruses we systematically defined the viral signaling network controlled by these enzymes. Quantitative cross-comparison revealed 33 F10 and/or H1 phosphosites within 17 viral proteins. Using this proteotype dataset to inform genotype-phenotype relationships we found that H1-deficient virions harbor a hidden hyper-cleavage phenotype driven by reversible phosphorylation of the virus protease I7 (S134). Quantitative phosphoproteomic profiling further revealed that the phosphorylation-dependent activity of the viral early transcription factor, A7 (Y367), underlies the transcription-deficient phenotype of H1 mutant virions. Together these results highlight the utility of combining quantitative proteotype screens with mutant viruses to uncover novel proteotype-phenotype-genotype relationships that are masked by classical genetic studies.

Keywords

Proteomics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities