Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Root transcriptome remodeling of Arabidopsis in response to high levels of magnesium sulfate

Root transcriptome remodeling of Arabidopsis in response to high levels of magnesium sulfate

Abstract

Martian regolith (unconsolidated surface material) is a potential medium for plant growth in bioregenerative life support systems during manned missions on Mars. However, hydrated magnesium sulfate mineral levels in the regolith of Mars can reach as high as 10 wt%, and would be expected to be highly inhibitory to plant growth. A global approach was used to identify novel genes with potential to enhance tolerance to high MgSO4 stress. The early Arabidopsis root transcriptome response to elevated concentrations of magnesium sulfate was characterized in col-0, and also between col-0 and the mutant line cax1-1 – a mutant relatively tolerant of high levels of MgSO4•7H2O in soil solution. Overall design: After 3 weeks of growth under hydroponic conditions, Arabidopsis thaliana col-0 roots were exposed to a basic nutrient solution (0.25 g/L MES, 1/16x MS, pH 5.7) with an additional 2.08 mM magnesium sulfate (total Ca:Mg ratio = 1:15) for 45 min., 90 min., or 180 min., while a col-0 control set was exposed to the basic nutrient solution without additional magnesium sulfate for 45 minutes. Arabidopsis thaliana cax1-1 roots were exposed to the basic nutrient solution with additional magnesium sulfate for 180 min. only. Four replicate containers were harvested for the control and each of the treatment sets, resulting in a total of 20 samples. Gene expression of the col-0 sets exposed to magnesium sulfate treatment for 45 min., 90 min., or 180 min. was compared to gene expression of the col-0 control set. Gene expression of the cax1-1 set exposed to magnesium sulfate treatment for 180 min. was compared to gene expression of the col-0 set exposed to magnesium sulfate treatment for 180 minutes.

Keywords

Transcriptomics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities