Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Plant gravitropic response.

Authors: A, Merkys; J, Darginaviciene;

Plant gravitropic response.

Abstract

The gravitropic response of plants to a change in the gravity vector may be divided. in the phase of induction and expression. During the induction phase the amyloplasts, due to their greater density than the cytoplasmic density, shift their position in less than a minute. During this shift there is an interaction with the endoplasmic reticulum, although a role of actin-like proteins of the cytoskeleton may also be involved in this process. The endoplasmatic reticulum maintains a store of sequestered calcium through the action of an ATP-dependent calcium uptake mediated by the Ca2+, Mg(2+)-ATPase system present in the membrane of this organelle. The interaction of the amyloplast with the endoplasmic reticulum leads to the release of free calcium ions from the endoplasmic store. The increased free Ca2+ level in the cytoplasm may modify the activities of certain enzymes and receptor proteins. The gravitropic induction phase is completed when the lateral polarization of the tissues has taken place. These tissues contain information about changes in direction of the IAA transport system and in competition of the IAA-receptor system for the phytohormone. This information is fixed in "memory" and its expression is achieved when the lateral gradient of IAA concentration and of the activity of the IAA-receptor protein complexes is formed in the horizontally oriented plant organ. Flows of IAA and calcium ions in opposite directions may lead to the expression of laterally differentiated growth.

Related Organizations
Keywords

Gravitropism, Indoleacetic Acids, Plant Cells, Cell Polarity, Ca(2+) Mg(2+)-ATPase, Gravity Sensing, Space Flight, Endoplasmic Reticulum, Plant Physiological Phenomena, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!