Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

Interaction of Escherichia coli RecA protein with LexA repressor. I. LexA repressor cleavage is competitive with binding of a secondary DNA molecule.

Authors: W M, Rehrauer; P E, Lavery; E L, Palmer; R N, Singh; S C, Kowalczykowski;

Interaction of Escherichia coli RecA protein with LexA repressor. I. LexA repressor cleavage is competitive with binding of a secondary DNA molecule.

Abstract

Essential to the two distinct cellular events of genetic recombination and SOS induction in Escherichia coli, RecA protein promotes the homologous pairing and exchange of DNA strands and the proteolytic cleavage of the LexA repressor, respectively. Since both of these activities require single-stranded DNA (ssDNA) and ATP, the inter-relationship between these reactions was investigated and found to display many parallels. The extent of active complex formed between RecA protein and M13 ssDNA, as measured by both ATP hydrolysis and LexA proteolysis, is stimulated in a similar manner by either a reduction in magnesium ion concentration or the presence of single-stranded DNA binding (SSB) protein. However, unexpectedly, SSB protein inhibits both LexA proteolysis and ATP hydrolysis (in assays containing repressor) at concentrations of RecA protein that are substoichiometric to the ssDNA, arguing that LexA repressor affects the competition between RecA and SSB proteins for limited ssDNA binding sites. Additionally, attenuation of LexA repressor cleavage in the presence of double-stranded DNA or by an excess of ssDNA suggests that interaction of the RecA nucleoprotein filament with either LexA repressor or a secondary DNA molecule is mutually exclusive. The significance of these results is discussed in the context of both the regulation of inducible responses to DNA damage, and the competitive relationship between the processes of SOS induction and genetic recombination.

Related Organizations
Keywords

Recombination, Genetic, Macromolecular Substances, Deoxyribonucleoproteins, Hydrolysis, Serine Endopeptidases, DNA, Single-Stranded, DNA-Binding Proteins, Rec A Recombinases, Adenosine Triphosphate, Bacterial Proteins, Escherichia coli, Magnesium, SOS Response, Genetics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Average
Top 10%
Top 10%
gold