Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Neurological decompression illness in swine.

Authors: J R, Broome; E J, Dick;

Neurological decompression illness in swine.

Abstract

A porcine model of neurological decompression illness (DCI) and its treatment is described.Pigs (wt. 16-22 kg) underwent a simulated dive to 200 feet of seawater (fsw) (612.6 kPa) for 24 min, then decompressed at 60 fsw/min-1 (183 kPa.min-1). Pigs that developed neurological DCI were sedated with diazepam, then treated by recompression on U.S. Navy Treatment Table 6. Functional outcome was assessed by treadmill running. At necropsy 24 h postdive, carcass density was measured by underwater weighing, and tissue samples including heart, spinal cord, and brain were taken for histopathological examination.Neurological DCI occurred in 73% of control animals and developed within 2-7 min in 50% of cases. Affected pigs had significantly earlier onset of skin DCI than unaffected pigs (means: 9.52 min vs. 17.9 min, p < 0.001). Only 16.4% of pigs made a full functional recovery after recompression treatment. Outcome at 24 h was not improved in 20 pigs randomized to receive adjunctive lidocaine infusion compared to 20 pigs that received saline alone. Following necropsy, 77% of cases had petechial hemorrhages grossly visible in the spinal cord. Multifocal, microscopic hemorrhages, predominantly of spinal cord white matter, were found in 86.6% of DCI cases. Neither weight, density, nor genetic predisposition were found to influence DCI risk.The model is analogous to severe, early-onset, neurological DCI in humans and allows prospective evaluation of risk reduction and treatment stratagems for this form of DCI. Many applied and basic science issues relevant to diving medicine may also be studied using the model, and adaptation to study hypobaric DCI and other clinical applications of hyperbaric oxygen is feasible.

Related Organizations
Keywords

Male, Disease Models, Animal, Spinal Cord, Swine, Animals, Lidocaine, Decompression Sickness, Purpura, Skin

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!