
Complementary DNA libraries are useful tools for uncovering genes of interest in C. elegans and finding specific homologies to genes in other organisms (Waterston et al., 1992; McCombie et al., 1992). When working with existing cDNA libraries, be sure to carefully choose which libraries would be most beneficial to the type of research being done. Some libraries may be specific for genes that are present in lower copy numbers, whereas others may be of a more general nature. It is important to fully understand the source and construction of the library you will be working with. Once an appropriate library has been chosen, work may begin to isolate a specific cDNA and sequence it completely or to survey many cDNAs by single-pass DNA sequencing. Whatever the project, it is important to develop a specific strategy for both the sequencing and the organization of the clones being characterized. The strategies and procedures we have outlined in this chapter have proven effective for rapid and comprehensive cDNA characterization.
DNA, Complementary, Base Sequence, Animals, Sequence Analysis, DNA, Caenorhabditis elegans
DNA, Complementary, Base Sequence, Animals, Sequence Analysis, DNA, Caenorhabditis elegans
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
