
pmid: 8353138
handle: 11386/3023262
Estrogen hormones are known to exert a complex influence on development and function of the female reproductive organs of vertebrates by regulating cell growth and differentiation, as well as to be implicated in oncogenesis and maintenance of tumor growth. Estrogen acts on cells via interaction with an intracellular receptor, which, like all receptors for steroid hormones, is a trans-acting transcription enhancer factor activated by the cognate ligand and capable of binding to specific, cis-acting enhancer elements usually located within the 5'-flanking regions of target genes. Additionally, estrogen regulates gene expression by influencing mRNA stability or via interaction of the estrogen receptor with transcription regulatory factors. This article reviews data indicating that estrogen directly activates (primary activation) expression of proto-oncogenes codifying for nuclear proteins that, in turn, are responsible for indirect (secondary) activation of other genes. This cascade mechanism of gene activation is likely to progress for several more steps and allows us to envisage how estrogen can direct a complex task such as cell reproduction. Among proto-oncogenes codifying for nuclear proteins, we focus on fos, jun, myc, and related genes. The mechanisms of regulation of these genes by estrogen, including regulation of transcription, messenger RNA stabilization, and protein-protein interaction, are reviewed.
Transcriptional Activation, Genes, myc, Genes, fos, Nuclear Proteins, Estrogens, Gene Expression Regulation, Genes, jun, Proto-Oncogenes, Animals, Humans, Cell Division
Transcriptional Activation, Genes, myc, Genes, fos, Nuclear Proteins, Estrogens, Gene Expression Regulation, Genes, jun, Proto-Oncogenes, Animals, Humans, Cell Division
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 103 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
