
Ionizing radiation can induce cancers in humans and animals and can cause in vitro neoplastic transformation of various rodent cell systems. However, numerous attempts to achieve neoplastic transformation of human cells by radiation have generally proven unsuccessful. Neoplastic transformation of immortalized human epidermal keratinocytes by X-ray irradiation has recently been reported. The carcinogenic effect of radiation on cultured human cells will be briefly reviewed. The current state-of-the-art in radiation-induced transformation of human cells in culture is presented. This will provide insight into the molecular and cellular mechanisms in the conversion of normal cells to a neoplastic state of growth.
Radiation, Cell Transformation, Neoplastic, Genes, ras, Neoplasms, Radiation-Induced, Gamma Rays, transformation, human cells, Humans, Biology, Cells, Cultured
Radiation, Cell Transformation, Neoplastic, Genes, ras, Neoplasms, Radiation-Induced, Gamma Rays, transformation, human cells, Humans, Biology, Cells, Cultured
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
