Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Chlorophyll a biosynthetic heterogeneity.

Authors: C A, Rebeiz; R, Parham; D A, Fasoula; I M, Ioannides;

Chlorophyll a biosynthetic heterogeneity.

Abstract

Chlorophyll a biosynthesis is presently interpreted in terms of two different biochemical pathways. According to one pathway, chlorophyll a is made via a single linear chain of reactions starting with divinylprotoporphyrin IX and ending with monovinylchlorophyll a. The experimental evidence for this pathway is marred by incompletely characterized intermediates that were detected in Chlorella mutants. The second pathway considers chlorophyll a to be made via multiple and parallel biosynthetic routes that result in the formation and accumulation of monovinyl- and divinylchlorophyll a chemical species. Two of these routes, namely the di/monocarboxylic monovinyl and divinyl routes, are responsible for the biosynthesis of most of the chlorophyll a in green plants. The experimental evidence for these two routes consists of: (a) the detection and spectroscopic characterization of intermediates and end products; (b) the demonstration of precursor-product relationships between various intermediates in vivo and in vitro; and (c) the detection of 4-vinylreductases that appear to be mainly responsible for the observed biosynthetic heterogeneity. The biological significance of chlorophyll a biosynthetic heterogeneity is becoming better understood. On the basis of the prevalence of the di/monocarboxylic monovinyl-and divinylchlorophyll a biosynthetic routes, green plants have been classified into three different greening groups. It now appears that the major chlorophylls in the euphotic zone of tropical waters are divinylchlorophyll a and b. It also appears that the di/monocarboxylic monovinyl and divinyl biosynthetic routes lead to the formation of different pigment proteins in different greening groups of plants, and that the more highly evolved monovinylchlorophyll a biosynthetic route is associated with higher field productivity in wheat.

Keywords

Chlorophyll, Models, Chemical, Tetrapyrroles, Mutagenesis, Pyrroles, Chlorella

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!