Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ European Journal of ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
BiPrints
Article . 1994
License: "In Copyright" Rights Statement
Data sources: BiPrints
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Publications at Bielefeld University
Article . 1994
License: "In Copyright" Rights Statement
versions View all 4 versions
addClaim

Localization of Rab5 to synaptic vesicles identifies endosomal intermediate in synaptic vesicle recycling pathway.

Authors: Fischer von Mollard, Gabriele; STAHL, B; WALCHSOLIMENA, C; TAKEI, K; DANIELS, L; KHOKLATCHEV, A; DECAMILLI, P; +2 Authors

Localization of Rab5 to synaptic vesicles identifies endosomal intermediate in synaptic vesicle recycling pathway.

Abstract

After exocytosis, synaptic vesicles rapidly endocytose and recycle but little is known about the molecular mechanisms involved. Rab5 is a ubiquitous low molecular weight GTP-binding protein required for endosomal fusion in fibroblasts. We have now raised polyclonal and monoclonal antibodies to rat Rab5 and show that in rat brain, Rab5 is a major synaptic vesicle protein. Immunoisolation of vesicular organelles from brain with antibodies to either Rab3A and Rab5 as small GTP-binding proteins or with synaptophysin as general synaptic vesicle marker demonstrates that there are overlapping populations of synaptic vesicles containing either Rab5 or Rab3A or both, suggesting a stage-specific association of these low-molecular weight GTP-binding proteins with synaptic vesicles. Our data provide the first biochemical evidence that synaptic vesicle recycling involves an endosomal intermediate similar to that of the receptor-mediated endocytosis pathway.

Country
Germany
Related Organizations
Keywords

Base Sequence, rab3 GTP-Binding Proteins, Molecular Sequence Data, Nerve Tissue Proteins, Endosomes, Endocytosis, Molecular Weight, GTP-Binding Proteins, Amino Acid Sequence, Synaptic Vesicles, Biomarkers, rab5 GTP-Binding Proteins

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    113
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
113
Top 10%
Top 10%
Top 10%
gold