
Unknown interactions between drugs remain the limiting factor for clinical application of drugs, and the induction and inhibition of drug-metabolizing CYP enzymes are considered the key to examining the drug-drug interaction (DDI). In this study, using human HepaRG cells as an in vitro model system, we analyzed the potential DDI based on the expression levels of CYP3A4 and CYP1A2. Rifampicin and omeprazole, the potent inducers for CYP3A4 and CYP1A2, respectively, induce expression of the corresponding CYP enzymes at both the mRNA and protein levels. We noticed that, in addition to inducing CYP1A2, omeprazole induced CYP3A4 mRNA expression in HepaRG cells. However, unexpectedly, CYP3A4 protein expression levels were not increased after omeprazole treatment. Concurrent administration of rifampicin and omeprazole showed an inhibitory effect of omeprazole on the CYP3A4 protein expression induced by rifampicin, while its mRNA induction remained intact. Cycloheximide chase assay revealed increased CYP3A4 protein degradation in the cells exposed to omeprazole. The data presented here suggest the potential importance of broadening the current DDI examination beyond conventional transcriptional induction and enzyme-activity inhibition tests to include post-translational regulation analysis of CYP enzyme expression.
Cytochrome P-450 CYP1A2, Humans, Cytochrome P-450 CYP3A, Cytochrome P-450 CYP3A Inducers, Drug Interactions, RNA, Messenger, Rifampin, Omeprazole, Cell Line
Cytochrome P-450 CYP1A2, Humans, Cytochrome P-450 CYP3A, Cytochrome P-450 CYP3A Inducers, Drug Interactions, RNA, Messenger, Rifampin, Omeprazole, Cell Line
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
