
Cardiovascular homeostasis is regulated by both physical and chemical factors. Vascular stiffness, a physical property of vessel, is crucial in maintaining the physiological function of vasculature. Vascular stiffness has been indicated to be correlated with hypertension, heart failure and other cardiovascular diseases. It has been the most widely accepted clinical index for assessment of vascular function and dysfunction. This paper reviews the commonly used experimental and clinical techniques for evaluating vascular stiffness including direct detection of the Young's modulus and indirect detection method that is based on ultrasound technique and others. Principles of these methodologies, as well as their advantages and disadvantages, are also presented here. Researchers and clinical staff are encouraged to choose the most suitable methods for detecting vascular stiffness according to their purposes and objects, so as to effectively evaluate vascular function.
Heart Failure, Vascular Stiffness, Cardiovascular Diseases, Elastic Modulus, Hypertension, Humans
Heart Failure, Vascular Stiffness, Cardiovascular Diseases, Elastic Modulus, Hypertension, Humans
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
