
pmid: 3612245
pmc: PMC6568971
Action potential-generating properties of olfactory receptor neurons in the olfactory epithelium of the salamander, Ambystoma tigrinum, were studied in control animals, and 2 and 4 weeks after olfactory nerve transection. The threshold for impulse generation in response to injected current was extremely low (74 +/- 46 pA). In addition, the discharge frequencies of the receptor neurons were exquisitely sensitive to small increments of injected current. These high sensitivities may be characteristic of small neurons and stand in contrast to the much lower sensitivities reported for large neurons. The high sensitivity has important implications for the input-output functions of this cell. After nerve transection, both the threshold and the frequency sensitivity decreased. These changes appear to be associated with increased potassium conductance, suggested by prominent membrane rectification and reduced amplitudes of later membrane action potentials in the spike trains. The olfactory receptor neuron appears to be a favorable model for exploring these properties.
Neurons, Caudata, Olfactory Mucosa, Olfactory Nerve, Action Potentials, Animals, Denervation, Electric Stimulation
Neurons, Caudata, Olfactory Mucosa, Olfactory Nerve, Action Potentials, Animals, Denervation, Electric Stimulation
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 18 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
