Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nucleic Acids Resear...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2021
License: CC BY NC
Data sources: PubMed Central
versions View all 2 versions
addClaim

Regeneration Roadmap: database resources for regenerative biology.

Authors: Kang, Wang; Jin, Tong; Zhang, Tao; Ma, Shuai; Yan, Haoteng; Liu, Zunpeng; Ji, Zhejun; +10 Authors

Regeneration Roadmap: database resources for regenerative biology.

Abstract

Regeneration plays an instrumental role in biological development and damage repair by constructing and replacing cells, tissues, and organs. Since regenerative capacity declines with age, promoting regeneration is heralded as a potential strategy for delaying aging. On this premise, mechanisms that regulate regeneration have been extensively studied across species and in different tissues. However, an open and comprehensive database collecting and standardizing the abundant data generated in regeneration research, such as high-throughput sequencing data, remains to be developed. In this work, we constructed Regeneration Roadmap to systematically and comprehensively collect such information over 2.38 million data entries across 11 species and 36 tissues, including regeneration-related genes, bulk and single-cell transcriptomics, epigenomics, and pharmacogenomics data. In this database, users can explore regulatory and expression changes of regeneration-associated genes in different species and tissues. Regeneration Roadmap provides the research community with a long-awaited and valuable data resource featuring convenient computing and visualizing tools, which is publicly available at https://ngdc.cncb.ac.cn/regeneration/index.

Keywords

Epigenomics, Aging, Databases, Factual, Databases, Genetic, Database Issue, Animals, Humans, Regeneration, Transcriptome

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
Green
gold