Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Kidney Internationalarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Uremic toxins.

Authors: Ringoir, S.M.G.; Schoots, A.C.; Vanholder, R.;
Abstract

It is the purpose of this paper to review our present knowledge about uremic toxicity, with a special emphasis on the methods that have been used to try to resolve this problem. More and more, sophisticated methods become available for the study of uremic toxicity. Many of these techniques are complicated and expensive, and have only a limited distinctive capacity. The HPLC method, however, is refined and allows a clear distinction between an impressive number of components. Moreover, there is a remarkable difference between the HPLC method appears to us as a valuable technique for the further study of uremic toxicity. At the moment, it is not possible to define each of the recognized products as uremic toxins. The aim should be, however, to eliminate retention products by dialysis in a way that the post-dialysis HPLC pattern resembles normal serum. Together with this strategy, the search for reliable markers of adequate dialysis should be continued.

Country
Netherlands
Related Organizations
Keywords

Renal Dialysis, Humans, Hemofiltration, Toxins, Biological, Uremia

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Average
Top 10%
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?