Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Stem Cells and Cloni...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2020
License: CC BY NC
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dental Pulp Stem Cells: Advances to Applications.

Authors: Tsutsui,Takeo;

Dental Pulp Stem Cells: Advances to Applications.

Abstract

Dental pulp stem cells (DPSCs) have a high capacity for differentiation and the ability to regenerate a dentin/pulp-like complex. Numerous studies have provided evidence of DPSCs' differentiation capacity, such as in neurogenesis, adipogenesis, osteogenesis, chondrogenesis, angiogenesis, and dentinogenesis. The molecular mechanisms and functions of DPSCs' differentiation process are affected by growth factors and scaffolds. For example, growth factors such as basic fibroblast growth factor (bFGF), transforming growth factor-β (TGF-β), nerve growth factor (NGF), platelet-derived growth factor (PDGF), and bone morphogenic proteins (BMPs) influence DPSC fate, including in differentiation, cell proliferation, and wound healing. In addition, several types of scaffolds, such as collagen, hydrogel, decellularized bioscaffold, and nanofibrous spongy microspheres, have been used to characterize DPSC cellular attachment, migration, proliferation, differentiation, and functions. An appropriate combination of growth factors and scaffolds can enhance the differentiation capacity of DPSCs, in terms of optimizing not only dental-related expression but also dental pulp morphology. For a cell-based clinical approach, focus has been placed on the tissue engineering triad [cells/bioactive molecules (growth factors)/scaffolds] to characterize DPSCs. It is clear that a deep understanding of the mechanisms of stem cells, including their aging, self-renewal, microenvironmental homeostasis, and differentiation correlated with cell activity, the energy for which is provided from mitochondria, should provide new approaches for DPSC research and therapeutics. Mitochondrial functions and dynamics are related to the direction of stem cell differentiation, including glycolysis, oxidative phosphorylation, mitochondrial metabolism, mitochondrial transcription factor A (TFAM), mitochondrial elongation, and mitochondrial fusion and fission proteins. This review summarizes the effects of major growth factors and scaffolds for regenerating dentin/pulp-like complexes, as well as elucidating mitochondrial properties of DPSCs for the development of advanced applications research.

Related Organizations
Keywords

Advances and Applications [Stem Cells and Cloning], Review

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    73
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
73
Top 1%
Top 10%
Top 1%
Green
gold