Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

[Cloning and characterization of chalcone synthase and chalcone isomerase genes in Arisaema heterophyllum].

Authors: Sheng-Xiang, Zhang; Yuan-Yuan, Shi; Chen-Kai, Wang; De-Rui, Zhao; Qing-Shan, Yang; Ke-Long, Ma; Jia-Wen, Wu;

[Cloning and characterization of chalcone synthase and chalcone isomerase genes in Arisaema heterophyllum].

Abstract

Chalcone synthase( CHS) and chalcone isomerase( CHI) are key enzymes in the biosynthesis pathway of flavonoids. In this study,unigenes for CHS and CHI were screened from the transcriptome database of Arisaema heterophyllum. The open reading frame( ORFs) of chalcone synthase( Ah CHS) and chalcone isomerase( Ah CHI) were cloned from the plant by RT-PCR. The physicochemical properties,expression and structure characteristics of the encoded proteins Ah CHS and Ah CHI were analyzed. The ORFs of Ah CHS and Ah CHI were 1 176,630 bp in length and encoded 392,209 amino acids,respectively. Ah CHS functioned as a symmetric homodimer. The N-terminal helix of one monomer entwined with the corresponding helix of another monomer. Each CHS monomer consisted of two structural domains. In particular,four conserved residues define the active site. The tertiary structure of Ah CHI revealed a novel open-faced β-sandwich fold. A large β-sheet( β4-β11) and a layer of α-helices( α1-α7) comprised the core structure. The residues spanning β4,β5,α4,and α6 in the three-dimensional structure were conserved among CHIs from different species. Notably,these structural elements formed the active site on the protein surface,and the topology of the active-site cleft defined the stereochemistry of the cyclization reaction. The homology comparison showed that Ah CHS had the highest similarity to the CHS of Anthurium andraeanum,while Ah CHI had the highest similarity to the CHI of Paeonia delavayi. This study provided the basis for the functional study of Ah CHS and Ah CHI and the further study on plant flavonoid biosynthesis pathway.

Related Organizations
Keywords

Cloning, Molecular, Intramolecular Lyases, Acyltransferases, Arisaema, Plant Proteins

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!