Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Research@WURarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Research@WUR
Article . 2018
License: CC BY NC ND
Data sources: Research@WUR
versions View all 2 versions
addClaim

Sparse single-step genomic BLUP in crossbreeding schemes.

Authors: Vandenplas, Jérémie; Calus, Mario P.L.; ten Napel, Jan;

Sparse single-step genomic BLUP in crossbreeding schemes.

Abstract

The algorithm for proven and young animals (APY) efficiently computes an approximated inverse of the genomic relationship matrix, by dividing genotyped animals in the so-called core and noncore animals. The APY leads to computationally feasible single-step genomic Best Linear Unbiased Prediction (ssGBLUP) with a large number of genotyped animals and was successfully applied to real single-breed or line datasets. This study aimed to assess the quality of genomic estimated breeding values (GEBV) when using the APY (GEBVAPY), in comparison to GEBV when using the directly inverted genomic relationship matrix (GEBVDIRECT), for situations based on crossbreeding schemes, including F1 and F2 crosses, such as the ones for pigs and chickens. Based on simulations of a 3-way crossbreeding program, we compared different approximated inverses of a genomic relationship matrix, by varying the size and the composition of the core group. We showed that GEBVAPY were accurate approximations of GEBVDIRECT for multivariate ssGBLUP involving different breeds and their crosses. GEBVAPY as accurate as GEBVDIRECT were obtained when the core groups included animals from different breed compositions and when the core groups had a size between the numbers of the largest eigenvalues explaining 98% and 99% of the variation in the raw genomic relationship matrix.

Country
Netherlands
Related Organizations
Keywords

Male, Genotype, Swine, APY, Genomics, Breeding, Single-step, Pedigree, Linear Models, Animals, Hybridization, Genetic, Computer Simulation, Female, Genomic evaluation, Chickens, Algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Average
Green
Related to Research communities