
Pyroptosis is a form of inflammatory programmed cell death activated by caspase-1 and caspase-4/5/11, and involves in the pathogenesis of infectious diseases and nervous system diseases. Pyroptosis is mediated by canonical inflammasome pathway and non-canonical inflammasome pathway. The canonical inflammasome pathway is activated in stroke and aggravates brain injury. Inhibition of inflammasome, caspase-1, IL-1β and IL-18 ameliorates brain injury. These studies indicate that canonical inflammasome pathway contributes to post-stroke brain injury, therefore, pyroptosis has become a potential therapeutic target for preventing excessive cell death during stroke. We reviewed the relationship between pyroptosis and stroke to provide some perspectives on future researches in this field.
Cell Death, Inflammasomes, Interleukin-1beta, Interleukin-18, Apoptosis, Stroke, Caspases, Pyroptosis, Animals, Humans, Apoptosis Regulatory Proteins
Cell Death, Inflammasomes, Interleukin-1beta, Interleukin-18, Apoptosis, Stroke, Caspases, Pyroptosis, Animals, Humans, Apoptosis Regulatory Proteins
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
