Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS Cnrarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Part of book or chapter of book . 2017
Data sources: IRIS Cnr
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Reprogramming of somatic cells: iPS and iN cells.

Authors: Broccoli V;

Reprogramming of somatic cells: iPS and iN cells.

Abstract

Limited access to human neurons has posed a significant barrier to progress in biological and preclinical studies of the human nervous system. The advent of cell reprogramming technologies has widely disclosed unprecedented opportunities to generate renewable sources of human neural cells for disease modeling, drug discovery, and cell therapeutics. Both somatic reprogramming into induced pluripotent stem cells (iPSCs) and directly induced Neurons (iNeurons) rely on transcription factor-based cellular conversion processes. Nevertheless, they rely on very distinct mechanisms, biological barriers, technical limitations, different levels of efficiency, and generate neural cells with distinctive properties. Human iPSCs represent a long-term renewable source of neural cells, but over time genomic aberrations might erode the quality of the cultures and the in vitro differentiation process requires extensive time. Conversely, direct neuronal reprogramming ensures a fast and straightforward generation of iNeurons endowed with functional properties. However, in this last case, conversion efficiency is reduced when starting from adult human cells, and the molecular and functional fidelity of iNeurons with respect to their corresponding native neuronal subtype is yet to be fully ascertained in many cases. For any biomedical research application, it should be carefully pondered the reprogramming method to use for generating reprogrammed human neuronal subtypes that best fit with the following analysis considering the existing limitations and gap of knowledge still present in this young field of investigation.

Keywords

Neurons, Direct cell reprogramming, iNeuronal cells, Induced Pluripotent Stem Cells, iPSCs, Cell Differentiation, Cellular Reprogramming, Cell therapy, Disease modeling, iNeurons, Pluripotent stem cells, Humans, Pharmacological reprogramming, CRISPR/Cas9, Genome editing, Transcription Factors

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!