Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ American Journal of ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

miR-186 inhibits cell proliferation of prostate cancer by targeting GOLPH3.

Authors: Xing, Hua; Yu, Xiao; Wenhai, Pan; Meiyun, Li; Xiaoxiao, Huang; Zexiao, Liao; Qi, Xian; +1 Authors

miR-186 inhibits cell proliferation of prostate cancer by targeting GOLPH3.

Abstract

Prostate cancer is one of the leading causes of cancer deaths among men, many miRNAs have been demonstrated to play critical role in the progression of prostate cancer, miR-186 suppresses the progression of many tumors, such as bladder cancer and glioma. Previous study shows miR-186 is downregulated in prostate cancer tissues, and is a good prognosis for prostate cancer patients. In this study, we found miR-186 was downregulated in prostate cancer cells and tissues, overexpression of miR-186 inhibited cell proliferation and tumorigenesis in vitro determined by MTT assay, colony formation assay and soft agar growth assay, whereas knockdown of miR-186 reduced these effects. Cell cycle analysis found miR-186 overexpression arrested cell cycle in G0/G1 phase, and reduced p21 and p27 levels, and enhanced Cyclin D1 and the phosphorylation of Rb levels, suggesting miR-186 blocked G1/S transition. A novel oncogene Golgi phhosphoprotein 3 (GOLPH3) was the target of miR-186, miR-186 bound to the 3'UTR of GOLPH3. Moreover, miR-186 was negatively correlated with GOLPH3 in prostate cancer tissues. In conclusion, our study suggested miR-186 inhibited cell proliferation through targeting oncogene GOLPH3.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Top 10%
Top 10%
Top 10%
gold
Related to Research communities
Cancer Research