
Stem cells are attributed with having a great potential in regenerative medicine. Pluripotent stem cells are particularly interesting because they can be multiplied indefinitely and also differentiated under defined conditions. Currently, cardiomyocytes can be differentiated very effectively from pluripotent stem cells, making the former an attractive starting material for cardiac disease modeling in a culture dish (patient in a dish) and cell based-therapy in heart failure. The rapid biotechnological advances made in recent years now enable these concepts to be translated into clinical applications.
Tissue Engineering, Cardiovascular Diseases, Guided Tissue Regeneration, Humans, Precision Medicine, Patient Care Planning, Stem Cell Transplantation
Tissue Engineering, Cardiovascular Diseases, Guided Tissue Regeneration, Humans, Precision Medicine, Patient Care Planning, Stem Cell Transplantation
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
