Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Diposit Digital de l...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Viabilidad de los materiales termoelectricos

Authors: Undurraga Almaraz, Aritz;

Viabilidad de los materiales termoelectricos

Abstract

Thermoelectric materials are able to take advantage of the waste heat in power plants and convert it into additional electricity; as well as to generate a thermal gradient using an electric current. Due to those characteristics thermoelectric materials are considered as a clean energy. Thermoelectric modules have a low efficiency (15% maximum), and actual lines of research are looking for higher efficiency materials. However, economic and sustainability factors are not taken into account in those investigations, and those can be critical for a large scale implantation. For example, it makes no sense to study materials whose components are not produced in necessary quantities, or even very expensive materials. In this project, some materials efficiency/cost relations are analyzed in order to choose which of them is a potential candidate for a large scale application, considering information about elements annual production or recycling potential. From this research in can be deduced that Zn4Sb3 is a good option if application’s temperature is between 300 K and 700 K due to its cheapness. On the other hand, for high temperature applications (1000 K), silicon-germanium alloys seem to be the best choice.

Treballs Finals del Màster d’Energies Renovables i Sostenibilitat Energètica, Facultat de Física, Universitat de Barcelona, Curs: 2013-2014, Tutora: Dra. Mercè Segarra Rubí

Related Organizations
Keywords

Feasibility studies, Master's theses, Estudis de viabilitat, Termoelectricitat, Thermoelectricity, Energies renovables, Master's thesis, Treballs de fi de màster, Renewable energy sources

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 104
    download downloads 352
  • 104
    views
    352
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
104
352
Related to Research communities