Downloads provided by UsageCounts
handle: 2445/199060
[en] In this project we study antoencoders, a machine learning tecnique used for dimensionality reduction of databases, analizing images or generating new data. We compare them with tradicional dimensionality reduction method, the principal component analysis (PCA). Even though in some fields (specially with small databases) PCA is useful we show that autoencoders can accomplish the same tasks with better results and even accomplish new ones unattainable with PCA. We prepared programs in Python implementing several versions of autoencoders, applied frequently used databases, comparing results with those obtained with PCA, when applicable.
Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2023, Director: Josep Fortiana Gregori
Estadística matemàtica, Neural networks (Computer science), Mathematical statistics, Multivariate analysis, Aprenentatge automàtic, Visió per ordinador, Machine learning, Bachelor's theses, Anàlisi multivariable, Xarxes neuronals (Informàtica), Computer vision, Treballs de fi de grau
Estadística matemàtica, Neural networks (Computer science), Mathematical statistics, Multivariate analysis, Aprenentatge automàtic, Visió per ordinador, Machine learning, Bachelor's theses, Anàlisi multivariable, Xarxes neuronals (Informàtica), Computer vision, Treballs de fi de grau
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 145 | |
| downloads | 86 |

Views provided by UsageCounts
Downloads provided by UsageCounts