Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Diposit Digital de l...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Recolector de Ciencia Abierta, RECOLECTA
Bachelor thesis . 2020
License: CC BY NC ND
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Field-assisted sintering: flash sintering

Authors: Vilella Piqué, Lluís;

Field-assisted sintering: flash sintering

Abstract

Flash sintering is a novel technique used for ceramics densification by means of heating and applying an electric field. Its advantages over conventional sintering have been discussed in the present work, amongst which, the following advantages are displayed: energy savings, shorter sintering times and preparation of ceramic materials with complex compositions by controlling abnormal grain growth and stoichiometry, as the loss of volatile compounds is avoided. The setup for flash sintering has been constantly developing since the introduction of the technique and sophisticated setups have been designed in order to collect all the required data during the same analysis. Moreover, the electrical response has been reviewed during this process where power, applied field and current are controlled. Flash sintering mechanisms have also been discussed as various authors proposed different mechanisms to explain this phenomenon such as Joule heating, nucleation of Frenkel pairs and electrochemical reduction. Furthermore, an extensive list of parameters controlling flash sintering have been studied and its optimization have been discussed; for instance, applied electric field, current density, initial particle size, green density, addition of sintering aids and the atmosphere. In this work, a comprehensive study of different prediction models have been made. These models have been created to predict sample temperature from furnace temperature, and onset temperature depending on the applied field. The last bibliographic section exhibit new materials sintering by flash sintering. Dwelling time and temperature are compared with the conventional sintering of the same materials. Useful information can be extracted from this analysis in order to prepare dense ceramics as a few studies about materials’ properties show similar results to conventionally sintered materials. However, flash sintering have been shown to substantially reduce onset temperatures and dwelling times.Concerning the experimental part, conventional sintering and flash sintering experiments of a commercial sample of BaTiO3 have been performed but relative densities and characterization methods have not been carried out due to the pandemic. Regarding the study of a previously prepared Nd2Zr2O7, conventional sintering was performed and the resulting relative density was calculated. X-ray diffraction analysis was carried out and the resulting diffractometer was analyzed. Impedance spectroscopy was carried out, but results were not analyzed as a full set of measurements was not performed.

Treballs Finals de Grau de Química, Facultat de Química, Universitat de Barcelona, Any: 2020, Tutora: Lourdes Mestres Vila

Related Organizations
Keywords

Bachelor's thesis, Bachelor's theses, Ceramic materials, Pyrochlore, Treballs de fi de grau, X-rays diffraction, Piroclor, Difracció de raigs X, Materials ceràmics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 113
    download downloads 84
  • 113
    views
    84
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
113
84
Green