
arXiv: 2410.21549
We propose a novel method for evaluating the performance of a content search system that measures the semantic match between a query and the results returned by the search system. We introduce a metric called "on-topic rate" to measure the percentage of results that are relevant to the query. To achieve this, we design a pipeline that defines a golden query set, retrieves the top K results for each query, and sends calls to GPT 3.5 with formulated prompts. Our semantic evaluation pipeline helps identify common failure patterns and goals against the metric for relevance improvements.
Comment: Accepted by 3rd International Workshop on Industrial Recommendation Systems (at CIKM 2024)
Computer Science - Computation and Language, Computer Science - Information Retrieval
Computer Science - Computation and Language, Computer Science - Information Retrieval
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
