Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Postępy Biochemiiarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

[Mesenchymal stem cells].

Authors: Zygmunt, Pojda; Eugeniusz, Machaj; Agata, Kurzyk; Sławomir, Mazur; Tomasz, Debski; Joanna, Gilewicz; Juliusz, Wysocki;

[Mesenchymal stem cells].

Abstract

The multipotential progenitor cells called ,Mesenchymal Stem Cells" (MSC) are capable of differrentiation at least into bone, cartilage, and adipose tissues. The commonly recognized role of these cells is the formation of connective tissue which participates in formation of every organ. The progeny of MSC produces also the hematopoietic microenvironment, recently it have been documented that these cells are capable of the modulation of the immune system activities. MSC are isolated from the tissues of fetal origin (umbilical cord, cord blood, or placenta), or from several adult donor sites, in particular from bone marrow and adipose tissue which are most useful for practical purposes. The capability of multipotential differentiation, immunomodulation, and the regulation of the endogenous tissue repair are the reasons why mesenchymal stem cells are widely applied for regenerative medicine purposes.

Keywords

Adult, Cartilage, Fetus, Adipose Tissue, Humans, Regeneration, Cell Differentiation, Mesenchymal Stem Cells, Bone and Bones

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average
gold