
arXiv: 2402.09256
Scattering amplitudes in $d+2$ dimensions can be recast as correlators of conformal primary operators in a putative holographic CFT$_d$ by working in a basis of boost eigenstates instead of momentum eigenstates. It has been shown previously that conformal primary operators with $\Delta \in \frac{d}{2} + i {\mathbb R}$ form a basis for massless one-particle representations. In this paper, we consider more general conformal primary operators with $\Delta \in {\mathbb C}$ and show that completeness, normalizability, and consistency with CPT implies that we must restrict the scaling dimensions to either $\Delta \in \frac{d}{2} + i {\mathbb R}$ or $\Delta \in {\mathbb R}$. Unlike those with $\Delta \in \frac{d}{2} + i {\mathbb R}$, the conformal primaries with $\Delta \in {\mathbb R}$ can be constructed without knowledge of the UV and can therefore be defined in effective field theories. With additional analyticity assumptions, we can restrict $\Delta \in 2 - {\mathbb Z}_{\geq0}$ or $\Delta \in \frac{1}{2}-{\mathbb Z}_{\geq0}$ for bosonic or fermionic operators, respectively.
Comment: 23 pages, 2 figures, 1 table
High Energy Physics - Theory
High Energy Physics - Theory
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
