Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DBLP
Article
Data sources: DBLP
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Maximizing the Minimum Eigenvalue in Constant Dimension

Authors: Adam Brown; Aditi Laddha; Mohit Singh;

Maximizing the Minimum Eigenvalue in Constant Dimension

Abstract

In an instance of the minimum eigenvalue problem, we are given a collection of $n$ vectors $v_1,\ldots, v_n \subset {\mathbb{R}^d}$, and the goal is to pick a subset $B\subseteq [n]$ of given vectors to maximize the minimum eigenvalue of the matrix $\sum_{i\in B} v_i v_i^{\top} $. Often, additional combinatorial constraints such as cardinality constraint $\left(|B|\leq k\right)$ or matroid constraint ($B$ is a basis of a matroid defined on $[n]$) must be satisfied by the chosen set of vectors. The minimum eigenvalue problem with matroid constraints models a wide variety of problems including the Santa Clause problem, the E-design problem, and the constructive Kadison-Singer problem. In this paper, we give a randomized algorithm that finds a set $B\subseteq [n]$ subject to any matroid constraint whose minimum eigenvalue is at least $(1-\epsilon)$ times the optimum, with high probability. The running time of the algorithm is $O\left( n^{O(d\log(d)/\epsilon^2)}\right)$. In particular, our results give a polynomial time asymptotic scheme when the dimension of the vectors is constant. Our algorithm uses a convex programming relaxation of the problem after guessing a rescaling which allows us to apply pipage rounding and matrix Chernoff inequalities to round to a good solution. The key new component is a structural lemma which enables us to "guess'' the appropriate rescaling, which could be of independent interest. Our approach generalizes the approximation guarantee to monotone, homogeneous functions and as such we can maximize $\det(\sum_{i\in B} v_i v_i^\top)^{1/d}$, or minimize any norm of the eigenvalues of the matrix $\left(\sum_{i\in B} v_i v_i^\top\right)^{-1} $, with the same running time under some mild assumptions. As a byproduct, we also get a simple algorithm for an algorithmic version of Kadison-Singer problem.

Keywords

Computer Science - Data Structures and Algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average