Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Indian Journal of Bi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

Essential tryptophan residues of ribulose 1,5-bisphosphate carboxylase.

Authors: U S, Purohit; A S, Bhagwat;

Essential tryptophan residues of ribulose 1,5-bisphosphate carboxylase.

Abstract

Ribulose 1,5-bisphosphate carboxylase [3-phospho-D-glyceratecarboxy-lyase (dimerizing), EC 4.1.1.39] is rapidly and irreversibly inactivated by micromolar concentrations of dimethyl (2-hydroxy-5-nitrobenzyl) sulphonium bromide (DMHNB), a tryptophan selective reagent, after reversible protection of the reactive sulphydryl groups. The inactivation followed pseudo-first-order reaction kinetics. Replots of the kinetic data indicated that no reversible enzyme-inhibitor complex was formed prior to irreversible modification. Kinetic analysis and the correlation of the spectral data at 410 nm with enzyme activity indicated that inactivation by DMHNB resulted from modification of on an average one tryptophan per 67 kDa combination of large and small subunits. Several competitive inhibitors and substrate RuBP offered strong protection against inhibition. The k1/2 (protection) for RuBP was 1.3 mM, indicating that the tryptophan residues may be located at or near the substrate binding site. Free and total sulphydryl groups were not affected by the reagent. The modified enzyme exhibited significantly reduced intrinsic fluorescence, indicating that the microenvironment of the tryptophans at the active site is significantly perturbed. Tryptic peptide profiles and CD spectral analyses suggested that inactivation may not be due to the extensive conformational changes in the enzyme molecule during modification.

Related Organizations
Keywords

Binding Sites, Ribulose-Bisphosphate Carboxylase, Sulfonium Compounds, Tryptophan

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold