Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2023
Data sources: zbMATH Open
versions View all 2 versions
addClaim

$\kappa$-Galilean and $\kappa$-Carrollian noncommutative spaces of worldlines

\(\kappa\)-Galilean and \(\kappa\)-Carrollian noncommutative spaces of worldlines
Authors: Ballesteros, Angel; Gubitosi, Giulia; Gutierrez-Sagredo, Ivan; Herranz, Francisco J.;

$\kappa$-Galilean and $\kappa$-Carrollian noncommutative spaces of worldlines

Abstract

The noncommutative spacetimes associated to the $\kappa$-Poincar\'e relativistic symmetries and their "non-relativistic" (Galilei) and "ultra-relativistic" (Carroll) limits are indistinguishable, since their coordinates satisfy the same algebra. In this work, we show that the three quantum kinematical models can be differentiated when looking at the associated spaces of time-like worldlines. Specifically, we construct the noncommutative spaces of time-like geodesics with $\kappa$-Galilei and $\kappa$-Carroll symmetries as contractions of the corresponding $\kappa$-Poincar\'e space and we show that these three spaces are defined by different algebras. In particular, the $\kappa$-Galilei space of worldlines resembles the so-called Euclidean Snyder model, while the $\kappa$-Carroll space turns out to be commutative. Furthermore, we identify the map between quantum spaces of geodesics and the corresponding noncommutative spacetimes, which requires to extend the space of geodesics by adding the noncommutative time coordinate.

Keywords

High Energy Physics - Theory, \(\kappa\)-Poincaré deformation, quantum observers, Geodesics in global differential geometry, General Relativity and Quantum Cosmology, quantum worldlines, momentum space, non-commutative spacetime, Formal methods and deformations in algebraic geometry, Applications of Lie groups to the sciences; explicit representations, Methods of noncommutative geometry in general relativity, Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics, Poincaré duality spaces, Galilei and Carroll, Mathematical Physics, Signal detection and filtering (aspects of stochastic processes)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green