<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Although the cellular function of group IVC phospholipase A(2) (IVC-PLA(2)) remains to be understood, the expression of IVC-PLA(2) in human monocytic THP-1 cells was increased during phorbol ester-induced macrophage differentiation. We therefore examined the role of IVC-PLA(2) in macrophage differentiation using THP-1 cells. Two THP-1 cell lines stably expressing IVC-PLA(2)-specific shRNA were established. Differentiation and maturation into macrophages on treatment with phorbol ester were facilitated by knockdown of IVC-PLA(2) without the compensatory induction of mRNA expression for other group IV and VI PLA(2)s. Furthermore, the enhancement of macrophage differentiation by IVC-PLA(2)-knockdown were abolished by treatment with lysophosphatidylcholine, a metabolite of phospholipids generated by PLA(2)-mediated hydrolysis, indicating that PLA(2) activity is necessary for the inhibition of macrophage differentiation by IVC-PLA(2). Additionally, we found that the differentiation into classically activated M1 macrophage was superior in IVC-PLA(2)-knockdown cells, whereas the differentiation into alternatively activated M2 macrophage was suppressed by IVC-PLA(2)-knockdown. These findings suggest that IVC-PLA(2) is involved in regulations of macrophage differentiation and macrophage polarization.
Group IV Phospholipases A2, Macrophages, Cell Polarity, Lysophosphatidylcholines, Cell Differentiation, Fatty Acids, Nonesterified, Monocytes, Gene Knockdown Techniques, Cell Adhesion, Human Umbilical Vein Endothelial Cells, Humans, RNA, Messenger, RNA, Small Interfering, Cells, Cultured
Group IV Phospholipases A2, Macrophages, Cell Polarity, Lysophosphatidylcholines, Cell Differentiation, Fatty Acids, Nonesterified, Monocytes, Gene Knockdown Techniques, Cell Adhesion, Human Umbilical Vein Endothelial Cells, Humans, RNA, Messenger, RNA, Small Interfering, Cells, Cultured
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |