Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Indoor Airarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Indoor Air
Article . 2012
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Thermal sensation: a mathematical model based on neurophysiology.

Authors: Kingma, B.; Schellen, L.; Frijns, A.; van Marken Lichtenbelt, W.D.;

Thermal sensation: a mathematical model based on neurophysiology.

Abstract

Thermal sensation has a large influence on thermal comfort, which is an important parameter for building performance. Understanding of thermal sensation may benefit from incorporating the physiology of thermal reception. The main issue is that humans do not sense temperature directly; the information is coded into neural discharge rates. This manuscript describes the development of a mathematical model of thermal sensation based on the neurophysiology of thermal reception. Experimental data from two independent studies were used to develop and validate the model. In both studies, skin and core temperature were measured. Thermal sensation votes were asked on the seven-point ASHRAE thermal sensation scale. For the development dataset, young adult males (N=12, 0.04Clo) were exposed to transient conditions; Tair 30-20-35-30°C. For validation, young adult males (N=8, 1.0Clo) were exposed to transient conditions; Tair: 17-25-17°C. The neurophysiological model significantly predicted thermal sensation for the development dataset (r2=0.89, P<0.001). Only information from warm-sensitive skin and core thermoreceptors was required. Validation revealed that the model predicted thermal sensation within acceptable range (root mean squared residual=0.38). The neurophysiological model captured the dynamics of thermal sensation. Therefore, the neurophysiological model of thermal sensation can be of great value in the design of high-performance buildings.The presented method, based on neurophysiology, can be highly beneficial for predicting thermal sensation under complex environments with respect to transient environments.

Keywords

Adult, Male, ENVIRONMENT, PERCEPTION, COMFORT, Thermal reception, THERMOREGULATION, Models, Neurological, Neurophysiology, THERMOGENESIS, SET-POINT, Thermoreceptors, STATE, Body Temperature, Young Adult, Mathematical model, Building design, Humans, Thermosensing, TEMPERATURE, Thermal sensation, Neural integration

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    64
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
64
Top 10%
Top 10%
Top 10%
bronze