
handle: 2158/592593
This book constitutes the thoroughly refereed post-proceedings of the 20th International Conference on Inductive Logic Programming, ILP 2010, held in Florence, Italy in June 2010. The 11 revised full papers and 15 revised short papers presented together with abstracts of three invited talks were carefully reviewed and selected during two rounds of refereeing and revision. All current issues in inductive logic programming, i.e. in logic programming for machine learning are addressed, in particular statistical learning and other probabilistic approaches to machine learning are reflected.
algorithmic learning - approximate inference - computational learning - data mining - probabilistic programming - relational learning - rule learning
algorithmic learning - approximate inference - computational learning - data mining - probabilistic programming - relational learning - rule learning
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
