Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Flore (Florence Rese...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
addClaim

Role of P1 and P2 purinergic receptors in the dentate gyrus during in vitro ischemia

Authors: PUGLIESE, ANNA MARIA; MARAULA, GIOVANNA; LANA, DANIELE; FUSCO, IRENE; MELLO, TOMMASO; Galli, A; COPPI, ELISABETTA; +1 Authors

Role of P1 and P2 purinergic receptors in the dentate gyrus during in vitro ischemia

Abstract

The hippocampus is comprised of two distinct subfields that show different responses to hypoxic/ischemic brain injury: the CA1 region is particularly susceptible, whereas the dentate gyrus (DG) is quite resistant. A major resistance of the DG to ischemia in adulthood is probably due to the regenerative capacity of the neural stem cells of the subgranular zone (SGZ) that proliferate and maturate into neurons, astrocytes and oligodendrocytes in response to multiple factors, including ischemic injury. The synaptic and proliferative response of the DG to severe oxygen and glucose deprivation (OGD) in acute rat hippocampal slices and the contribution of P1 and P2 purinergic receptors to these phenomena was investigated. Nine min OGD always induced the appearance of anoxic depolarization (AD), a clear sign of tissue damage, and the irreversible block of synaptic activity up to 24 hours from the end of the insult, as assessed by extracellular recordings of field excitatory post-synaptic potentials (fEPSPs) in the dentate molecular layer of the hippocampal slices. The selective antagonist of adenosine A2A receptors ZM241385, applied before and during OGD, prevented or delayed the appearance of AD and protected from the irreversible block of protected from the irreversible block of neurotransmission induced by the 9-min OGD. Similar effects were obtained in the presence of the selective antagonists of P2Y1 receptor MRS2179 and of P2X7 receptor BBG. In hippocampal slices prepared from bromodeoxyrudine (BrdU)-treated rats and incubated with the immature neuronal marker doublecortin (DCX), the number of BrdU+ cells of the SGZ was significantly decreased 6 hours after OGD, but returned to control values 24 hours thereafter, when a significant increase of DCX immunofluorescence was also observed. The decrease of the number of BrdU+ cells 6 hours after OGD was antagonized by ZM241385 and BBG, but not by MRS2179 that, 24 hours after OGD, reduced the number of BrdU+ cells. Data indicate that A2A, P2Y1 and P2X7 receptors contribute to the early damage induced by OGD in the DG likely contributing to glutamate induced excitotoxic effects that causes irreversible synaptic failure after severe OGD. A2A and P2X7 receptors are also involved in the decreased proliferation of immature neuronal cells at a precocious time after OGD. Neurotransmission induced by the 9-min OGD. Similar effects were obtained in the presence of the selective antagonists of P2Y1 receptor MRS2179 and of P2X7 receptor BBG. In hippocampal slices prepared from bromodeoxyrudine (BrdU)-treated rats and incubated with the immature neuronal marker doublecortin (DCX), the number of BrdU+ cells of the SGZ was significantly decreased 6 hours after OGD, but returned to control values 24 hours thereafter, when a significant increase of DCX immunofluorescence was also observed. The decrease of the number of BrdU+ cells 6 hours after OGD was antagonized by ZM241385 and BBG, but not by RS2179 that, 24 hours after OGD, reduced the number of BrdU+ cells. Data indicate that A2A, P2Y1 and P2X7 receptors contribute to the early damage induced by OGD in the DG likely contributing to glutamateinduced excitotoxic effects that causes irreversible synaptic failure after severe OGD. A2A and P2X7 receptors are also involved in the decreased proliferation of immature neuronal cells at a precocious time after OGD.

Country
Italy
Related Organizations
Keywords

P1 and P2 purinergic receptors

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!