Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Histamine H₄ receptor activation enhances LPS-induced IL-6 production in mast cells via ERK and PI3K activation.

Authors: Pragnya, Desai; Robin L, Thurmond;

Histamine H₄ receptor activation enhances LPS-induced IL-6 production in mast cells via ERK and PI3K activation.

Abstract

The histamine H(4) receptor (H(4)R) has been implicated in numerous inflammatory functions. Here it is shown that the receptor can mediate cytokine production from mast cells. Histamine and an H(4)R agonist, JNJ 28610244, induced the production of IL-6 in mouse bone marrow (BM)-derived mast cells. This effect was blocked by two different H(4)R antagonists and was not present in H(4)R-deficient cells. In addition, histamine acting via the H(4) R potentiated LPS-induced IL-6 production. Histamine-induced IL-6 production could be blocked by inhibitors of ERK and phosphoinositide 3-kinase γ (PI3Kγ) pathways. Furthermore, it was shown that H(4)R activation can induce phosphorylation of ERK, MEK and AKT. H(4)R activation led to a rapid and transient phosphorylation of these kinases, whereas with LPS the activation occurred at later time points. When both histamine and LPS were added, the phosphorylation was evident at 5 min and persisted for at least 60 min suggesting that changes in the kinetics of kinase activation may be one mechanism driving the signaling interaction between the H(4)R and toll-like receptors. These observations suggest that the H(4)R can synergize with other inflammatory signals to potentiate cytokine production and provides mechanistic information on the role of the H(4)R in inflammation.

Related Organizations
Keywords

Inflammation, Lipopolysaccharides, Mice, Knockout, Mice, Inbred BALB C, Indoles, Mitogen-Activated Protein Kinase 3, Interleukin-6, Piperazines, Receptors, G-Protein-Coupled, Enzyme Activation, Mice, Inbred C57BL, Mice, Phosphatidylinositol 3-Kinases, Bone Marrow, Animals, Receptors, Histamine, Mast Cells, Cells, Cultured, Histamine, Receptors, Histamine H4

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    57
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
57
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!