
handle: 2123/10457
Intra-day sources of data have proven effective for dynamic volatility and tail risk estimation. Expected shortfall is a tail risk measure, that is now recommended by the Basel Committee, involving a conditional expectation that can be semi-parametrically estimated via an asymmetric sum of squares function. The conditional autoregressive expectile class of model, used to indirectly model expected shortfall, is generalised to incorporate information on the intra-day range. An asymmetric Gaussian density model error formulation allows a likelihood to be developed that leads to semiparametric estimation and forecasts of expectiles, and subsequently of expected shortfall. Adaptive Markov chain Monte Carlo sampling schemes are employed for estimation, while their performance is assessed via a simulation study. The proposed models compare favourably with a large range of competitors in an empirical study forecasting seven financial return series over a ten year period.
Semi-parametric, CARE model, Markov chain Monte Carlo method, Asymmetric Gaussian distribution, Nonlinear, Expected
Semi-parametric, CARE model, Markov chain Monte Carlo method, Asymmetric Gaussian distribution, Nonlinear, Expected
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
