Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ UPCommons. Portal de...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Recolector de Ciencia Abierta, RECOLECTA
Bachelor thesis . 2025
License: CC BY NC SA
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Neural Network Models of Multi-choice decision making

Authors: Rodríguez Martínez, Francisco Javier;

Neural Network Models of Multi-choice decision making

Abstract

Entender los mecanismos neuronales que subyacen a la toma de decisiones es un objetivo central de la neurociencia. En tareas de alternativa múltiple, los animales a menudo muestran sesgos de elección idiosincráticos —preferencias consistentes no explicadas por señales externas— que pueden surgir de asimetrías en sus circuitos subyacentes. Aquí, desarrollamos un modelo mecanicista de una red de neuronas basado en tasas de "disparo" para explicar cómo emergen dichos sesgos y de qué manera las características temporales de una tarea de respuesta con espera de tres opciones (3CDR) influyen en el rendimiento. El modelo consta de tres poblaciones de neuronas excitatorias (una por opción) acopladas a través de una población inhibitoria global y alimentadas tanto por una señal de “urgencia” no selectiva como por entradas transitorias específicas de cada elección. Mediante una reducción a la forma normal, describimos su dinámica como un proceso de difusión con deriva bidimensional equivalente al movimiento de una partícula sobre un potencial de energía. Simulaciones estocásticas reproducen cuantitativamente la precisión de ratones en la tarea en función de variaciones en las duraciones de estímulo y espera. Nuestro marco proporciona así una herramienta cuantitativa para interpretar registros neuronales y diseñar manipulaciones dirigidas que permitan investigar cómo las asimetrías en los circuitos y las señales temporales moldean los resultados de la decisión.

Entendre els mecanismes neuronals que hi ha darrere la presa de decisions és un objectiu central de la neurociència. En tasques d’alternativa múltiple, els animals sovint mostren biaixos de tria idiosincràtics —preferències consistents no explicades per senyals externs— que poden sorgir d’asimetries en els seus circuits subjacents. Aquí, desenvolupem un model mecanicista d’una xarxa de neurones basat en taxes de “tir” per explicar com emergeixen aquests biaixos i de quina manera les característiques temporals d’una tasca de resposta amb espera de tres opcions (3CDR) influeixen en el rendiment. El model consta de tres poblacions de neurones excitatòries (una per opció) acoblades mitjançant una població inhibitòria global i impulsades tant per un senyal d’urgència no selectiu com per entrades transitòries específiques de cada tria. Mitjançant una reducció a la forma normal, descrivim la seva dinàmica com un procés de difusió amb deriva bidimensional equivalent al moviment d’una partícula sobre un potencial d’energia. Simulacions estocàstiques reprodueixen quantitativament la precisió dels ratolins en la tasca en funció de variacions en les durades d’estímul i espera. El nostre marc proporciona així una eina quantitativa per interpretar registres neuronals i dissenyar manipulacions dirigides que permetin investigar com les asimetries en els circuits i els senyals temporals modelen els resultats de la decisió.

Understanding the neural mechanisms underlying decision making is a central goal of neuroscience. In multi‐alternative tasks, animals often display idiosyncratic choice biases—consistent preferences not explained by external cues—which may arise from subtle asymmetries in their underlying circuits. Here, we develop a mechanistic rate‐based network model to explain how such biases emerge and how temporal features of the task influence performance in a three‐choice delayed‐response paradigm (3CDR). The model comprises three excitatory populations (one per choice) coupled via a global inhibitory population and driven by both a non‐selective “urgency” ramp and transient, location‐specific inputs. By performing a normal‐form reduction, we map its dynamics onto a two‐dimensional drift‐diffusion process that is equivalent to the motion of a particle on an evolving energy landscape. Stochastic simulations quantitatively reproduce mice choice accuracy across variations in stimulus and delay durations. Our framework thus provides a quantitative tool for interpreting neural recordings and for designing targeted perturbations to probe how circuit asymmetries and timing signals shape decision outcomes.

Related Organizations
Keywords

Àrees temàtiques de la UPC::Matemàtiques i estadística, Drift-di!usion model, multi-choice tasks, Neurosciences, energy potential, Processos estocàstics, neural circuit, Classificació AMS::92 Biology and other natural sciences::92B Mathematical biology in general, Neural networks (Computer science), Stochastic processes, rate model, Xarxes neuronals (Informàtica), Neurociències, Classificació AMS::82 Statistical mechanics, structure of matter::82C Time-dependent statistical mechanics (dynamic and nonequilibrium), Decision making

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average