Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ UPCommons. Portal de...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimización de la distribución de las estaciones y de las bicicletas de Bicing Barcelona

Authors: Giner Fabregat, Gerard;

Optimización de la distribución de las estaciones y de las bicicletas de Bicing Barcelona

Abstract

El presente trabajo, tiene como objetivo proponer soluciones innovadoras para mejorar la gestión del sistema de bicicletas compartidas de Barcelona. El estudio aborda uno de los principales desafíos de Bicing: la desigual distribución de bicicletas a lo largo de la ciudad y en diferentes momentos del día, que afecta a los usuarios. El análisis combina técnicas avanzadas de estadística, modelos predictivos y optimización para identificar áreas vulnerables en términos de accesibilidad y diseñar estrategias que equilibren la distribución de bicicletas. A través de métodos como clustering y el uso de modelos de predicción basados en machine learning, se anticipan los patrones de uso del sistema. Estas predicciones alimentan algoritmos de optimización que permiten planificar rutas eficientes para el reposicionamiento de bicicletas. Los resultados obtenidos destacan la importancia de una gestión proactiva del sistema, mejorando tanto la satisfacción de los usuarios como la eficiencia operativa.

Aquest treball té com a objectiu proposar solucions innovadores per millorar la gestió del sistema de bicicletes compartides de Barcelona. L’estudi aborda un dels principals desafiaments de Bicing: la desigual distribució de bicicletes al llarg de la ciutat i en diferents moments del dia, que afecta als usuaris. L’anàlisi combina tècniques avançades d’estadística, models predictius i optimització per identificar àrees vulnerables en termes d’accessibilitat i dissenyar estratègies que equilibren la distribució de bicicletes. Mitjançant mètodes com clustering i l’ús de models de predicció basats en machine learning, s’anticipen els patrons d’ús del sistema. Aquestes prediccions alimenten algoritmes d’optimització que permeten planificar rutes eficients per al reposicionament de bicicletes. Els resultats obtinguts destaquen la importància d’una gestió proactiva del sistema, millorant tant la satisfacció dels usuaris com l’eficiència operativa.

This work aims to propose innovative solutions to improve the management of Barcelona's bike-sharing system. The study addresses one of Bicing's main challenges: the unequal distribution of bicycles across the city and at different times of the day, which affects the users. The analysis combines advanced statistical techniques, predictive models, and optimization to identify vulnerable areas in terms of accessibility and design strategies to balance bicycle distribution. Using methods such as clustering and predictive models based on machine learning, the system's usage patterns are anticipated. These predictions feed optimization algorithms that enable the planning of efficient routes for bicycle repositioning. The results highlight the importance of proactive system management, improving both user satisfaction and operational efficiency.

Keywords

optimización, Classificació AMS::90 Operations research, Àrees temàtiques de la UPC::Matemàtiques i estadística, Combinatorial optimization, Bicing, 330, vulnerabilidad, mathematical programming::90C Mathematical programming, Bicycle commuting, modelos predictivos, Urban transportation, Optimització combinatòria, Classificació AMS::90 Operations research, mathematical programming::90C Mathematical programming, accesibilidad, Mobilitat sostenible, Classificació AMS::90 Operations research, mathematical programming::90B Operations research and management science, mathematical programming::90B Operations research and management science, Classificació AMS::68 Computer science::68T Artificial intelligence, Classificació AMS::62 Statistics::62M Inference from stochastic processes, ruta, ruta., clustering, reposicionamiento, Desplaçaments en bicicleta

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green