
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 2117/411440
El estudio de los sistemas sensoriales, especialmente en el dominio auditivo, tiene una importancia primordial en neurociencia. Comprender la tonotopía (la disposición espacial de la representación de las frecuencias) y la propagación topográfica (la distribución espacial de la actividad neuronal) en el sistema auditivo es esencial para desentrañar los mecanismos subyacentes a la percepción del sonido. En este trabajo, presentamos un modelo matemático y computacional para modelar estas propiedades espaciales. Nuestro modelo establece un vínculo entre la tonotopía y la topografía utilizando el concepto topológico de continuidad. Mediante simulaciones computacionales, demostramos cómo este marco replica con precisión algunos comportamientos conocidos observados en el córtex auditivo primario, profundizando en nuestra comprensión de cómo se representa la tonotopía. Al proporcionar tanto una base teórica como simulaciones prácticas, nuestro estudio contribuye a una comprensión más profunda de las características espaciales del procesamiento auditivo en el cerebro.
L'estudi dels sistemes sensorials, particularment en el domini auditiu, té una importància primordial en neurociència. Comprendre la tonotopia (la disposició espacial de la representació de les freqüències) i la propagació topogràfica (la distribució espacial de l'activitat neural) en el sistema auditiu és essencial per entendre els mecanismes subjacents a la percepció del so. En aquest treball, presentem un model matemàtic i computacional per a modelar aquestes propietats espaials. El nostre model estableix un vincle entre la tonotopia i la topografia mitjançant la noció topològica de continuïtat. Mitjançant simulacions computacionals, demostrem com aquest model replica amb precisió alguns comportaments coneguts observats en el còrtex auditiu primari, aprofundint en la nostra comprensió de com es representa la tonotopia. En proporcionar tant una base teòrica com simulacions pràctiques, el nostre estudi contribueix a una comprensió més profunda de les característiques espacials del processament auditiu en el cervell.
The study of sensory pathways, particularly in the auditory domain, holds paramount importance in neuroscience. Understanding tonotopy (the spatial arrangement of frequency representation) and topographical propagation (the spatial distribution of neural activity) within the auditory pathway is essential for unravelling the mechanisms underlying sound perception. In this work, we present a mathematical and computational framework aimed at modelling these spatial properties. Our model establishes a link between tonotopy and topography using the topological concept of continuity. Through computational simulations, we demonstrate how this framework accurately replicates some known behaviours observed in the primary auditory cortex, furthering our understanding of how tonotopy is represented. By providing both a theoretical foundation and practical simulations, our study contributes to a deeper understanding of the spatial characteristics of auditory processing in the brain.
Outgoing
Àrees temàtiques de la UPC::Matemàtiques i estadística, topology, Tonotopy, cochlea, Classificació AMS::92 Biology and other natural sciences::92C Physiological, cellular and medical topics, Classificació AMS::92 Biology and other natural sciences::92C Physiological, cellular and medical topics, Topology, continuity, Topologia, Neural networks (Computer science), topography, auditory cortex, Xarxes neuronals (Informàtica), Àrees temàtiques de la UPC::Informàtica
Àrees temàtiques de la UPC::Matemàtiques i estadística, topology, Tonotopy, cochlea, Classificació AMS::92 Biology and other natural sciences::92C Physiological, cellular and medical topics, Classificació AMS::92 Biology and other natural sciences::92C Physiological, cellular and medical topics, Topology, continuity, Topologia, Neural networks (Computer science), topography, auditory cortex, Xarxes neuronals (Informàtica), Àrees temàtiques de la UPC::Informàtica
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
views | 108 | |
downloads | 57 |