Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ UPCommons. Portal de...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Recolector de Ciencia Abierta, RECOLECTA
Bachelor thesis . 2023
License: CC BY NC SA
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Machine learning techniques for optimal worm-like motion

Authors: Jiménez Blanco, Albert;

Machine learning techniques for optimal worm-like motion

Abstract

En un context de popularització de les tècniques d’Intel·ligència Artificial, aquest treball es proposa aplicar la versió més coneguda d’aquestes, les xarxes neuronals, per tractar comprendre la dinàmica del tipus de cuc C.elegans. Xarxes denses, convolucionals i recurrents van ser provades per tractar de predir moments de flexió a través de posicions i validar l’actual teoria sobre el moviment d’aquests cucs. La capacitat de les Xarxes Neuronals de predir moments a través de posicions sintètiques i experimentals demostrarà ser molt bona, tot i que caldria més investigació per aconseguir una resposta definitiva.

En un contexto de popularización de las técnicas de Inteligencia Artificial, este trabajo se propone aplicar la versión más conocida de estas, las redes neuronales, para tratar de comprender la dinámica del tipo de gusano C.elegans. Redes densas, convolucionales y recurrentes serán probadas para tratar de predecir momentos de flexión a través de posiciones y validar la actual teoría sobre el movimiento de estos gusanos. La capacidad de las Redes Neuronales de predecir momentos a través de posiciones sintéticas demostrará ser muy buena, aunque haría falta más investigación para llegar a una respuesta definitiva.

In a context of popularization of Artificial Intelligence techniques, this project apllies its most known implementation, neural networks, to try to understand the dynamics underlying the motion of the nematode C.elegans. Dense, convolutional and recurrent networks will be tried to predict moments in base of positions and validate the current theory of these worm’s motion. The capacity of Neural Networks to predict muscle activity, i.e. bending moments, from both synthetic and experimental positions will prove to be very good. However, more investigation would be needed in order to reach a definitive answer.

Keywords

Artificial intelligence, Àrees temàtiques de la UPC::Matemàtiques i estadística, C.Elegans, Neural Networks, Intel·ligència artificial, Motion Dynamics, Classificació AMS::74 Mechanics of deformable solids::74P Optimization, Neural networks (Computer science), Machine Learning, Classificació AMS::68 Computer science::68T Artificial intelligence, Artificial Intelligence, Machine learning, Aprenentatge automàtic, Xarxes neuronals (Informàtica), Mechanincs

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 78
    download downloads 60
  • 78
    views
    60
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
78
60
Green
Related to Research communities