Downloads provided by UsageCounts
handle: 2117/336293
This project covers the idea of the Fibonacci retracement rule and its mathematical proof. Firstly, a thorough analysis of stochastic processes, in particular, diffusion processes such as the Brownian motion, the CEV model or Bessel processes, will be done. Then it follows with a study of Technical Analysis and the Fibonacci and golden numbers, introducing the concept of the Fibonacci retracement rule. Finally, a detailed proof of the soundness of the rule will be given. At the end, we encounter codes for simulating diffusion process and real financial stocks applying the Fibonacci retracement rule.
CEV model, Classificació AMS::60 Probability theory and stochastic processes::60G Stochastic processes, Processos estocàstics, Stopping time, Technical Analysis, Mathematical finance, Bessel processes, :60 Probability theory and stochastic processes::60G Stochastic processes [Classificació AMS], Fibonacci, Stochastic processes, Àrees temàtiques de la UPC::Matemàtiques i estadística::Estadística matemàtica, :Matemàtiques i estadística::Estadística matemàtica [Àrees temàtiques de la UPC], Fibonacci retracement rule, Brownian Motion, Diffusion processes, Golden number
CEV model, Classificació AMS::60 Probability theory and stochastic processes::60G Stochastic processes, Processos estocàstics, Stopping time, Technical Analysis, Mathematical finance, Bessel processes, :60 Probability theory and stochastic processes::60G Stochastic processes [Classificació AMS], Fibonacci, Stochastic processes, Àrees temàtiques de la UPC::Matemàtiques i estadística::Estadística matemàtica, :Matemàtiques i estadística::Estadística matemàtica [Àrees temàtiques de la UPC], Fibonacci retracement rule, Brownian Motion, Diffusion processes, Golden number
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 140 | |
| downloads | 123 |

Views provided by UsageCounts
Downloads provided by UsageCounts