Views provided by UsageCounts
handle: 2117/107909
In this work we study the metric dimension and the location-domination number of maximal outerplanar graphs. Concretely, we determine tight upper and lower bounds on the metric dimension and characterize those maximal outerplanar graphs attaining the lower bound. We also give a lower bound on the location-domination number of maximal outerplanar graphs.
Àrees temàtiques de la UPC::Matemàtiques i estadística, :Matemàtiques i estadística [Àrees temàtiques de la UPC], Computational geometry, Geometria computacional
Àrees temàtiques de la UPC::Matemàtiques i estadística, :Matemàtiques i estadística [Àrees temàtiques de la UPC], Computational geometry, Geometria computacional
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 33 |

Views provided by UsageCounts