Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2021
Data sources: zbMATH Open
versions View all 2 versions
addClaim

On $(\beta,\gamma)$-Chebyshev functions and points of the interval

On \((\beta,\gamma)\)-Chebyshev functions and points of the interval
Authors: De Marchi, Stefano; Elefante, Giacomo; Marchetti, Francesco;

On $(\beta,\gamma)$-Chebyshev functions and points of the interval

Abstract

In this paper, we introduce the class of $(\beta,\gamma)$-Chebyshev functions and corresponding points, which can be seen as a family of {\it generalized} Chebyshev polynomials and points. For the $(\beta,\gamma)$-Chebyshev functions, we prove that they are orthogonal in certain subintervals of $[-1,1]$ with respect to a weighted arc-cosine measure. In particular we investigate the cases where they become polynomials, deriving new results concerning classical Chebyshev polynomials of first kind. Besides, we show that subsets of Chebyshev and Chebyshev-Lobatto points are instances of $(\beta,\gamma)$-Chebyshev points. We also study the behavior of the Lebesgue constants of the polynomial interpolant at these points on varying the parameters $\beta$ and $\gamma$.

Keywords

Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.), Chebyshev points, Lebesgue constant, Mathematics - Numerical Analysis, Chebyshev polynomials, Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis, generalized Chebyshev points, Interpolation in approximation theory

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green